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Impedance Transformation and Matching
for Lumped Complex Load with
Nonuniform Transmission Line

ISAO ENDO, YOSHIAKI NEMOTO, MEMBER, IEEE, AND RISABURO SATO, FELLOW, IEEE

A%tract —New nonuniform transmission-linematching networks for a
class of lumped complex loads are presented. A parabolic (or reciprocal

parabolic) tapered transmission line, whose exact equivalent circuit is

represented by a mixed lumped and distributed circuit, can transform the

lumped series RC (or parallel RL ) loads into different lumped impedances

which are more convenient than the original load impedances for ordinary

matching network design. Simple design procedures are described and

useful design charts are given. Also, numerical examples are shown includ-

ing experimental verification.

I. INTRODUCTION

A

N IMPORTANT and interesting problem in micro-

wave engineering is the design of impedance match-

ing networks for complex loads. A number of design

methods have been previously investigated and applied to

microwave circuits [1], [2].

Designs for matching networks may be classified into

several categories according to their purposes and oper-

ation, namely, the matching network 1) designed as a

one-point matching or broad-band equalizer, 2) designed

for a complex or real load, 3) constructed with lumped

elements or distributed ones, etc. [3]–[7].

In this paper, we propose a new approach to solve a

complex matching problem using nonuniform transmission

lines for lumped complex loads. It is well known that

nonuniform transmission lines show superior responses to

those of uniform transmission lines, but it is difficult to

find the exact network functions of general nonuniform

transmission lines from the telegrapher’s equation except

for special cases [8]–[12]. On the other hand, we have

shown a new method to obtain an exact network function

of a class of nonuniform transmission lines based on new

equivalent transformations [13], [14]. In the case of the

parabolic tapered transmission line (PTL), its equivalent

circuit is given as the circuit consisting of a cascade con-

nection of a lumped capacitor, a uniform transmission line,

a negative lumped capacitor, and an ideal transformer [13].

The equivalent circuit of the reciprocal parabolic tapered

transmission line (RPTL) is given as the dual circuit of the

PTL circuit. By attending to the negative lumped elements

appearing in these equivalent circuits, we can discuss the
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nonuniform transmission-line impedance transformation

and matching network for lumped complex loads. Both the

PTL and RPTL may transform the lumped load imped-

ance into different lumped impedances which are more

convenient than the original load impedance for an ordinary

matching network design. When the real part of a lumped

series R C load is larger than the reference impedance, the

PTL may decrease the level of the original load impedance

in all frequency ranges. A quarter-wavelength PTL may

transform any lumped series RC load into another con-

venient driving point impedance in narrow frequency

ranges. The RPTL impedance transformation network can

be treated as the dual of the PTL. We also demonstrate the

usefulness of these procedures of impedance transforma-

tion and matching by numerical examples, including ex-

perimental verification.

II. IMPEDANCE TRANSFORMATION AND MATCHING

FOR LUMPED RC LOADS WITH PARABOLIC TAPERED

TRANSMISSION LINES

A PTL, whose characteristic impedance distribution k

given by

()
2

W(x)=wo 1++
2

(1)

is represented by a mixed lumped and distributed equivalent

circuit as shown in Fig. 1, where W. is the front-end

(x= O) characteristic impedance, K1 is a positive constant,

and 1 is a line length of the PTL. In the equivalent circuit,

the element values are given as follows [13]:

k=l++l
1

(2)

IA& = k2W0 (3)

CO=(l+K1)l/(k2WOv) (4)

and v denotes the velocity of light. Note that the lumped

capacitor located at the right-hand side of the equivalent

circuit is a negative one.

The PTL loaded by lumped series RC impedance of ZL

1
Z~=RL+~

JticL
(5)

is shown in Fig. 2(a) and its equivalent circuit is shown in

Fig. 2(b).
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Fig. 1. (a) The parabolic taperedtransmissionline and (b) its equivalent
circuits.
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Fig. 2. (a) The parabolic tapered transmission line loaded by lumped
series RC impedance and (b) its equivalent circuit.

In Fig. 2(b), the negative capacitor – C ~ in the equivalent

circuit of the PTL may cancel out the capacitor CL in the

complex load when C ~ equals CL. By choosing appropriate

values for the characteristic impedance VWOand the line

length 1 of the uniform transmission line and the transfor-

mation ratio k of the ideal transformer (IT), the driving

point impedance Zin becomes a lumped series RC imped-

ance, which is, in general, different from the load imped-

ance Z~.

A. Impedance Transformation for all Frequency Ranges

Procedures of impedance transformation for all

frequency ranges are summarized in the following four

steps, where we assume that the reference impedance is

RO Q

Step 1) Cancellation of two capacitors of – C ~ and CL.

We set

CO= CL. (6)

Step 2) Selecting the characteristic impedance VVO. We

set

WO=RL. (7)

The driving point impedance observed at the right-hand

side of the transformer in Fig. 2(b) becomes R ~.
Step 3) Selecting the transformation ratio k of the

transformer. We set

k={=. (8)

The driving point impedance observed at the left-hand

side of the transformer becomes the pure resistor R ~ of the

100
(RiI=50 [$21)

-z:
.

i
10

1

0.1 1 10 100
_ CL[pFl

Fig. 3. The line length 1 versus CL for R. = 50 S?.

TABLE I
THEPARAMETERS OF PTL’s FOR NUMERICAL EXAMPLES OF

ALL-FREQUENCY TRANSFORMATION

% “----T=- m
reference impedance. The transformer ratio k must be

larger than unity, so that the above three steps can be

carried out when the inequality

RL>RO (9)

is satisfied. If these procedures are completed, the driving

point impedance Zi. will become

1
Z,n=Ro+—

jakCL
(10)

for all frequency ranges.

Step 4) Determination of network parameters of the

PTL.
Equations (2) -(4) give the line length 1,

acteristic impedance WO, and the constant

as follows:

1= (RL–~~”)vCL

WO=RL/k2=R0

K1=l/(k–l).

front-end char-

K_l of the PTL

(11)

(12)

(13)

The line length 1 versus CL is shown in Fig. 3 for

R ~ = 500. In Fig. 3, the parameter is RL, the real part of

the load impedance. For higher levels of load impedance, a

longer line length is needed.
Numerical Examples: We show these impedance trans-

formations by numerical examples for loads of CL= 2 pF

and R ~ = 300 and 500 Q, respectively, for R ~ = 50 !2. The

parameters of the PTL are shown in Table I.
The frequency responses of the load impedance and the

transformed driving point impedance are shown in Fig. 4
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IMPEDRNCE COORDINATES

f - D.4 – 2.5 (GHz), (5E Ohm normalized)

Fig. 4. The scheme of afl frequency impedance transformation on the
impedance chart.

Ro ~
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Fig. 5. The circuit diagram of achieving one-point matching using the

lumped inductor.

for the frequency range ~ = 0.4–2.5 GHz. The impedance

loci Z~ of the load impedances are assigned by capital

letters A –A’ and B –B’, corresponding to loads A and B,

respectively, shown in Table I, and the impedance loci Zi~

of the transformed driving point impedance are assigned

by small letters a –a’ and b-b’, corresponding to loads A

and B, respectively. The load impedances whose imped-

ance loci are located at regions of very high levels are

transformed to the regions of low-impedance levels located

on a unit circle of normalized resistance. Evidently, match-

ing techniques for the transformed low-level driving point

impedances are easier than those for the original load

impedances.

B. A One-Point Matching Technique

For one-point impedance matching between a generator

with internal impedance R ~ and driving point impedance

Zi~, one can use a lumped inductor L in series at the
front-end of the PTL by the simple technique as shown in

Fig. 5. We show examples of frequency responses of the

final driving point impedance ~i~ (one-point matched) in

Fig. 6 for frequency ranges of ~ = 0.4–2.5 GHz and the

center frequency of& = 1 GHz.

When one-point matching is carried out for these cases,

the behavior of the network is that of an RLC series

resonance circuit, so that the quality factor Q of the

driving point impedance ~i. is given by

Q= 1 1

2~fOkCLR0 = 21i’focL{~ “
(14)

IMPEDRNCE COORDINATES

f- B.4 – 2.5 (GHz), (5@ Ohm normalized)

Fig. 6. The scheme of one-point impedance matching using the lumped
inductor of all frequency transformation designs.

From (14), an increase of the resistive component RL of

the load impedance Z~ causes a decrease of Q so that the

load impedances having higher resistive components give

broader band frequency matching than those having lower

resistive components.

C. Impedance Transformation for Narrow Frequency Ranges

The exact impedance transformation described in Sec-

tion II-A can be carried out under the inequality condition

of (9). If the inequality is not satisfied, we may introduce a

well-known quarter-wave matching technique for narrow-

band impedance transformations. This impedance transfor-

mation is summarized in the following four steps.

Step 1) Cancellation of two capacitors of – C ~ and CL.

We set

CO= CL. (15)

Step 2) Determination of line length 1. For a design

frequency fo, we set the line length 1 of the PTL to a

quarter-wavelength, i.e.,

~_lv

4fo”

In this step, the driving point impedance Zi~

zj.(juo) =*+*
L

(16)

becomes

(17)

at the frequency fo.

Step 3) Determination of transformer ratio k and char-

acteristic impedance WO. If we set

the real part of (17) becomes R o. The unknown parameter

k will be uniquely determined from (2)-(4), (15), and (16)

k=l+ 1 >1.
4focL~~

(19)
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TABLE II
Tm PARAMETERS OF PTL’s FOR NARROW-BAND DESIGN

(fO =1 GHz)

ZL k V70[.fl] ‘1
L[cm]

‘L
= 5oo [n]

load A = 2[pF] 1.79 88.3 1.26 7.5
CL

Step 4) Determination of network parameters of the

PTL. The line length 1 is given by (16), and

K1=(k–1)-1=4&CL~~

wo=~=y.

(20)

(21)

We demonstrate these narrow-band impedance transfor-

mations by numerical examples for loads CL= 2 pF, and

RL = 10, 300, and 500 Q for R. = 50 Q The parameters of

the PTL are shown in Table II for a design frequency ~0 = 1

GHz. The frequency responses of the transformed driving

point impedances 21. and the one-point matched driving

point impedances 21. (achieved by the same technique

described in Section II-C) are shown in Fig. 7(a) and (b),

respectively, for the frequency range j = 0.4–2.5 GHz.

III. ADMITTANCE TRANSFORMATION AND

MATCHING FOR LUMPED RL LoADs WITH

RECIPROCAL PARABOLIC TAPERED

TRANSMISSION LINES

The characteristic impedance distribution of the recipro-

cal parabolic tapered transmission line (RPTL) is given by

W.
w’(x) = (22)

()

1X2-

l+~T

An RPTL loaded by a lumped parallel RL admittance Y~

1
YL=++—

L jtiLL
(23)

is shown in Fig. 8(a) and its equivalent circuit is shown in

Fig. 8(b) [13]. In this equivalent circuit, the circuit parame-

ters are given as follows:

k=l+~>l (24)
2

VWO= Wo/k2 (25)

Lo= WO(l+K2)l/(k2v). (26)

The admittance transformation is the dual of that de-

scribed in the previous section. Table III gives these for-

mulas and information, the ratio of the imaginary to the

real part of the immittance before and after the transfor-

IMPEDRNCE COORDINATES

c,

f - a.4 - 2.5 (GHz), (Sa Ohm normalized)

(a)

IMPEIIRNCE COORDINATES
.

.
f - !2.4 - 2.5 [GHz), (50 Ohm normalized)

(b)

Fig. 7. The scheme of (a) narrow-band impedance transformation on

the impedance chart. The impedance loci of ZL are assigned by capital
letters (A – A’, &B’, and C– C’ correspond to the load shown in

Table II). The transformed impedance loci are assigned by smafl letters

and (b) one-point impedance matching using the lumped inductor.

mation, for the gain-bandwidth estimations. Fig. 9 shows

the line length 1 as a function of LL for the case of all

frequency transformations.

JV. EXPERIMENTAL RESULTS

Two lumped series RC loads and PTL’s were con-

structed. These loads consist of a metallized film resistor

and a chip capacitor in series. The measured frequency

responses of these loads (load I and load II) are shown in

Figs. 10 and 11, respectively, for the frequency range of

50–300 MHz, and represent good lumped impedances. In

Table IV, typical values of load constants (they are de-

termined from measured responses at ~ =150 MHz) and

parameters of the PTL’s designed for all frequency trans-

formations are listed. The line length needed for load II is

very short as compared with the wavelength of the measur-
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Fig. 8. (a) The reciprocal parabolic tapered transmission line loaded by
the lumped parallel RL admittance and (b) its equivalent circuit.

TABLE III
IMMITTANCE TRANSFORMATION FORMULAS WITH PTL AND RPTL

series RC impedance transformation with PTL parallel RL admittance transformation with RPTL

all frequency narrow frequency all frequency narrow frequency

transf onnation transformation transformation transformation

k = (RL -~L)vcL Q = V / (4fo)

i = ‘~ ‘/&L)vLL ; ‘=vk;’)

WO = R. W. =~L / k

transmission lims
WO=R

o
0 ‘L

Kl=l /(k-l) K2=l /(k-1) K2=l /(k-1)
K2=l /(k-1)

parameters

where where where
where

k=~/Ro>l k = 1 + (4 foCL~L) ‘1 > I k= RL/Ro<l
k=l+(~/4foLL)>l

load immittance before
zL(jw) = ~ + *

‘L(JoO) = % + ~

1
YL(ju) = ~ + —

1 1

transformation
YL(jwO) = ~ + T

L L
j LuLL

‘WOLL

(imaginary part) 1 1 >
R

_L_

(real Part) KR
LL

LUOCLRL ULL WL
OL

driving point immittance 1 1
Zin(jo) = RO + — Zin(jwo) = R. +

1 1 1

after transformation jwkCL m Yin[jw) = ~ + EL Yin(jtiol = L+—

R’
jOJokLL

(imaginary part) 1 1
R

~ J&

(real part) WkCLRo mokCLRO ukLL luokLL

(RO=50[!2])

100

~

:

t10

/ II ,( I 1X1 1!11 / 1 I I I I Ill

u LL[nH]

Fig. 9. The line length 1 versus L= for R. = 50 fl.

ing frequency. These PTL’s are constructed in shielded

microstrip.

The measured frequency responses of the driving point

impedance ZiH are shown in Figs. 10 and 11, respectively.

In these figures, the theoretical responses were calculated

from the load constants and PTL parameters in Table IV

and the equivalent circuit shown in Fig. 2(b). Although

there is a slight error apparent in the case of load II, both

measured responses seem to be in good agreement with the

IMPEDRNCE COORDINFITES

— theoretical
m m~ : ~

~
[5E! ohm normal fzed)

Fig. 10. Experimental results for the load I shown in Table 11,

theoretical responses. These measurements demonstrate the

validity of the impedance transformation technique and

the operation of the PTL notwithstanding the line length.

V. CONCLUSIONS

We have demonstrated a simple technique for designing

a parabolic tapered transmission line and reciprocal para-

bolic tapered transmission-line impedance transformation
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IMPEDt3NCE COORDINFITES

_ theoretical

? ? :
mm

f=50 Flaz

(Se Ohm normalized)

Fig. 11. Experimental results fortheload IIshownin Table II.

TABLE IV

TYPICAL VALUES OF LOAD CONSTANTS AND PARAMETERS OF PTL’s

DESIGNED FOR ALL-FREQUENCY TRANSFORMATION

load parameters

constants of PTLs

RL[fl] CLIPI?l Wo[nl K1 t [cm]

load I 188.9 8.59 50 1.060 18.13

load 11 90.2 3.29 50 2.913 2.27

networks for lumped RC and RL loads. Applying the

parabolic tapered transmission lines, we may decrease the

impedance levels of the series RC loads, and applying the

reciprocal parabolic tapered transmission line, we may

decrease the admittance levels of the parallel RL loads,

both for all frequency ranges. Matching techniques are

simplet with the use of parabolic and reciprocal parabolic

tapered transmission lines as proposed in this paper. The

quarter-wavelength parabolic (reciprocal parabolic) tapered

transmission line can transform any lumped series RC

(parallel RL) load into a convenient impedance for

ordinary impedance matching in narrow frequency ranges.

We have also shown experimental results for lumped RC

loads and have demonstrated the usefulness of the para-

bolic and reciprocal parabolic tapered transmission lines

and their equivalent circuits.
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Lossy Inductive-Post Obstacles in Lossy
Waveguide

PING GUAN LI AND ARLON TAYLOR ADAMS, SENIOR MEMBER, IEEE

Abstract — Post and wafl losses are treated for inductive obstacles in

rectangular waveguide. Post losses are treated rigorously by moment

methods and wall losses are obtained by perturbational methods. Losses

may be taken into account by a modified equivalent circuit and a Iossy

transmission line. Post losses may be comparable to waft losses.

I. INTRODUCTION

I NDUCTIVE POSTS in rectangular waveguide have been

treated by many researchers [1]–[7], starting with the

classical treatment by Schwinger. A recent analysis [8] by

the authors utilized a Galerkin moment-method solution.

The post currents are represented i.n terms of a Fourier

series Z: ~ A ~eJn@ and as many terms of the series as

necessary are used, enabling one to treat arbitrary post

configurations. The extension to lossy posts and lossy walls

is considered in this paper. Post losses are treated rigor-

ously by moment methods in a direct extension of the

analysis of [8]. The post losses are taken into account by a

modification of the equivalent circuit of the obstacle; resis-

tive elements are added and reactive elements are changed

in value. The wall losses are obtained by perturbational

methods. Orthogonality is not maintained for wall losses.

The waveguide is separated in several regions (with differ-

ent numerical methods applicable to each) and the total

wall losses are calculated. The wall losses may then be

separated into two parts: a) the total minus dominant

mode (or excess) wall losses, and b) the dominant mode

wall losses. The latter may be treated by a lossy transmis-

sion-line model and the former may be treated by further

modification of the lumped equivalent circuit. Typical re-

sults are presented, It is noted that post losses are signifi-

cant and may in some cases be comparable to wall losses.

Manuscript receivedMarch 2. 1984; revisedJuly 30, 1984.
The authors are with the Department of Electrical and Computer

Engineering, SyracuseUniversity, Syracuse,NY 13210

For efficient analysis of post filters, the cascading of

equivalent circuits (i.e., the neglect of higher order mode

interactions) is desirable. It has been shown in [8] that such

an assumption is reasonable, even for high-Q filters. The

treatment described above permits such a cascaded model

for lossy filter analysis.

II. POST LOSSES

Fig. 1 shows a lossy cylindrical inductive post in a

rectangular waveguide. A dominant mode traveling in the z

direction is incident upon the post. A cylindrical coordi-

nate system is centered on the post axis at z = O, y = c. The

incident electric field may be expressed as

E7 = EOe-Jk(~ sin%

a
(1)

where

“=+2-(:12=;and’=:
The incident electric field can also

Fourier-series form [8]

be expressed in the

)
rza .l~(kr)e~ne (2)

where

()~=tan–l Z .
‘b

The induced volume current density inside the post may

be represented as

where kc is the wavenumber of the conductor.

(3)

For a good
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