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Impedance Transformation and Matching
for Lumped Complex Load with
Nonuniform Transmission Line

ISAO ENDO, YOSHIAKI NEMOTO, MEMBER, IEEE, AND RISABURO SATO, FELLOW, IEEE

Abstract —New nonuniform transmission-line matching networks for a
class of lumped complex loads are presented. A parabolic (or reciprocal
parabolic) tapered transmission line, whose exact equivalent circuit is
represented by a mixed lumped and distributed circuit, can transform the
lumped series RC (or parallel RL ) loads into different lumped impedances
which are more convenient than the original load impedances for ordinary
matching network design. Simple design procedures are described and
useful design charts are given. Also, numerical examples are shown includ-
ing experimental verification.

I. INTRODUCTION

N IMPORTANT and interesting problem in micro-

wave engineering is the design of impedance match-
ing networks for complex loads. A number of design
methods have been previously investigated and applied to
microwave circuits [1], [2].

Designs for matching networks may be classified into
several categories according to their purposes and oper-
ation, namely, the matching network 1) designed as a
one-point matching or broad-band equalizer, 2) designed
for a complex or real load, 3) constructed with lumped
elements or distributed ones, etc. [3]-{7]

In this paper, we propose a new approach to solve a
complex matching problem using nonuniform transmission
lines for lumped complex loads. It is well known that
nonuniform transmission lines show superior responses to
those of uniform transmission lines, but it is difficuit to
find the exact network functions of general nonuniform
transmission lines from the telegrapher’s equation except
for special cases [8]-[12]. On the other hand, we have
shown a new method to obtain an exact network function
of a class of nonuniform transmission lines based on new
equivalent transformations [13], [14]. In the case of the
parabolic tapered transmission line (PTL), its equivalent
circuit is given as the circuit consisting of a cascade con-
nection of a lumped capacitor, a uniform transmission line,
a negative lumped capacitor, and an ideal transformer [13].
The equivalent circuit of the reciprocal parabolic tapered
transmission line (RPTL) is given as the dual circuit of the
PTL circuit. By attending to the negative lumped elements
appearing in these equivalent circuits, we can discuss the
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nonuniform transmission-line impedance transformation
and matching network for lumped complex loads. Both the
PTL and RPTL may transform the lumped load imped-
ance into different lumped impedances which are more
convenient than the original load impedance for an ordinary
matching network design. When the real part of a lumped
series RC load is larger than the reference impedance, the
PTL may decrease the level of the original load impedance
in all frequency ranges. A quarter-wavelength PTL may
transform any lumped series RC load into another con-
venient driving point impedance in narrow frequency
ranges. The RPTL impedance transformation network can
be treated as the dual of the PTL. We also demonstrate the
usefulness of these procedures of impedance transforma-
tion and matching by numerical examples, including ex-
perimental verification.

II. IMPEDANCE TRANSFORMATION AND MATCHING
FOR LUMPED RC LOADS WITH PARABOLIC TAPERED
TRANSMISSION LINES

A PTL, whose characteristic impedance distribution is
given by
W(x)=w,[1+ 2% ’ (1)
0 K,
is represented by a mixed lumped and distributed equivalent
circuit as shown in Fig. 1, where W, is the front-end
(x = 0) characteristic impedance, K, is a positive constant,

and / is a line length of the PTL. In the equivalent circuit,
the element values are given as follows [13]:

1
k=1+Z>1 (2)
W, = k*W, (3)
C0=(1+K1)l/(k2W'011) (4)

and » denotes the velocity of light. Note that the lumped
capacitor located at the right-hand side of the equivalent
circuit is a negative one.

The PTL loaded by lumped series RC impedance of Z;

(5)

is shown in Fig. 2(a) and its equivalent circuit is shown in
Fig. 2(b).

1
ZL_RL+E
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(a) The parabolic tapered transmission line and (b) its equivalent
circuits.
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Fig. 2. (a) The parabolic tapered transmission line loaded by lumped
series RC impedance and (b) its equivalent circuit.

In Fig. 2(b), the negative capacitor —C , in the equivalent
circuit of the PTL may cancel out the capacitor C; in the
complex load when C; equals C;. By choosing appropriate
values for the characteristic impedance W, and the line
length ! of the uniform transmission line and the transfor-
mation ratio k of the ideal transformer (IT), the driving
point impedance Z,, becomes a lumped series RC imped-
ance, which is, in general, different from the load imped-
ance Z;.

A. Impedance Transformation for all Frequency Ranges

Procedures of impedance transformation for all
frequency ranges are summarized in the following four
steps, where we assume that the reference impedance is
R, Q.

Step 1) Cancellation of two capacitors of —C and C;.
We set

C,=C;. (6)

Step 2) Selecting the characteristic impedance W,. We
set

W,=R,. (7)

The driving point impedance observed at the right-hand
side of the transformer in Fig. 2(b) becomes R;.
Step 3) Selecting the transformation ratio k of the

transformer. We set
k=yR;/R,.

(®)

The driving point impedance observed at the left-hand
side of the transformer becomes the pure resistor R, of the

(Rg=50[01)
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Fig. 3. The line length / versus C; for Ry = 50 Q.

TABLEI
THE PARAMETERS OF PTL’S FOR NUMERICAL EXAMPLES OF
ALL-FREQUENCY TRANSFORMATION

2p k WO[Q] K 2 lcm]
R = 500[Q]
load A L
CL = 2[pF] 3.16 50 0.462 20.6
R. = 300([Q]
load B CL = 2[pF) 2.45 50 0.690 10.7

reference impedance. The transformer ratio & must be
larger than unity, so that the above three steps can be
carried out when the inequality

R, >R,

(9)
is satisfied. If these procedures are completed, the driving
point impedance Z;, will become

1
Zm - RO + jwkCL

(10)

for all frequency ranges.

Step 4) Determination of network parameters of the
PTL.

Equations (2)~-(4) give the line length /, front-end char-
acteristic impedance W, and the constant K, of the PTL

as follows:
I=(R,—RoR,)»C,

Wo= R./k*=R, (12)
K, =1/(k-1). (13)

The line length [ versus C, is shown in Fig. 3 for
R, =50 Q. In Fig. 3, the parameter is R, the real part of
the load impedance. For higher levels of load impedance, a
longer line length is needed.

Numerical Examples: We show these impedance trans-
formations by numerical examples for loads of C; =2 pF
and R; =300 and 500 Q, respectively, for R, =50 2. The
parameters of the PTL are shown in Table L.

The frequency responses of the load impedance and the
transformed driving point impedance are shown in Fig. 4

(11)



IMPEDANCE COORDINRTES

f = B8.4 — 2.5 (GHz), (58 Ohm normalized)

Fig. 4. The scheme of all frequency impedance transformation on the

impedance chart.

Fig. 5. The circuit diagram of achieving one-point matching using the

lumped inductor.

for the frequency range f = 0.4-2.5 GHz. The impedance
loci Z; of the load impedances are assigned by capital
letters A— 4’ and B- B’, corresponding to loads 4 and B,
respectively, shown in Table I, and the impedance loci Z;,
of the transformed driving point impedance are assigned
by small letters a—a’ and b-b’, corresponding to loads A
and B, respectively. The load impedances whose imped-
ance loci are located at regions of very high levels are
transformed to the regions of low-impedance levels located
on a unit circle of normalized resistance. Evidently, match-
ing techniques for the transformed low-level driving point
impedances are easier than those for the original load
impedances.

B. A One-Point Matching Technique

For one-point impedance matching between a generator
with internal impedance R, and driving point impedance
Z,,, one can use a lumped inductor L in series at the
front-end of the PTL by the simple technique as shown in
Fig. 5. We show examples of frequency responses of the
final driving point impedance Zin (one-point matched) in
Fig. 6 for frequency ranges of f=04-2.5 GHz and the
center frequency of f, =1 GHz.

When one-point matching is carried out for these cases,
the behavior of the network is that of an RLC series
resonance circuit, so that the quality factor Q of the

driving point impedance Z,, is given by

1 1
e 27fokC R, ZWfOCL\/RL/RO'

(14)
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IMPEDANCE COORDINRTES

f =08.4 - 2.5 (GHz), (58 Ohm normalized)

Fig. 6. The scheme of one-point impedance matching using the lumped
inductor of all frequency transformation designs.

From (14), an increase of the resistive component R; of
the load impedance Z; causes a decrease of Q so that the
load impedances having higher resistive components give
broader band frequency matching than those having lower
resistive components.

C. Impedance Transformation for Narrow Frequency Ranges

The exact impedance transformation described in Sec-
tion II-A can be carried out under the inequality condition
of (9). If the inequality is not satisfied, we may introduce a
well-known quarter-wave matching technique for narrow-
band impedance transformations. This impedance transfor-
mation is summarized in the following four steps.

Step 1) Cancellation of two capacitors of —C, and C,.
We set

(15)

Step 2) Determination of line length /. For a design
frequency f,, we set the line length / of the PTL to a
quarter-wavelength, i.e,,

Co=C,.

1
I==—. 16
In this step, the driving point impedance Z,, becomes
W 1
Z,(joy) = ——+ = 17
m(] 0) kZRL ]kaCL ( )

at the frequency f,.
Step 3) Determination of transformer ratio k£ and char-
acteristic impedance W,,. If we set

(18)

the real part of (17) becomes R . The unknown parameter
k will be uniquely determined from (2)—(4), (15), and (16)

W, = k/R R,

1

— >
4fOCLVRORL

k=1+

(19)
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TABLE I1
THE PARAMETERS OF PTL’s FOR NARROW-BAND DESIGN
(fo=1GHz)
zg, k Vi, (9] Ky 2{cm]
' R = 500[9]
load A ¢, = 21pF] 1.79 §8.3 1.26 7.5
R, = 300(%]
load B ¢, = 2IoF] 2.02 60.6 0.980| 7.5
= 10[Q]
load C ¢, = 2[pF] 6.59 3.39 0.179 | 7.5

Step 4) Determination of network parameters of the
PTL. The line length / is given by (16), and

K= (k_l)_1=4fOCLVRORL (20)
_Wo _ JRoRs 21
(O @)

We demonstrate these narrow-band impedance transfor-
mations by numerical examples for loads C; =2 pF, and
R, =10, 300, and 500 £ for R, = 50 . The parameters of
the PTL are shown in Table II for a design frequency f, =1
GHz. The frequency responses of the transformed driving
point impedances Z;, and the one-point matched driving
point impedances Z,, (achieved by the same technique
described in Section II-C) are shown in Fig. 7(a) and (b),
respectively, for the frequency range f = 0.4-2.5 GHz.

III. ADMITTANCE TRANSFORMATION AND
MATCHING FOR LUMPED RL LOADS WITH
RECIPROCAL PARABOLIC TAPERED
TRANSMISSION LINES

The characteristic impedance distribution of the recipro-
cal parabolic tapered transmission line (RPTL) is given by

Wo

1 x\? ‘
e
An RPTL loaded by a lumped parallel RL admittance Y,
1 1 (23)

B E—I: " JoLp
is shown in Fig. 8(a) and its equivalent circuit is shown in
Fig. 8(b) [13]. In this equivalent circuit, the circuit parame-
ters are given as follows:

W'(x)= (22)

Y,

1

k=1+->1 (24)
Wy =W, /k? (25)
Lo =W,(1+K,)1/(k*»). (26)

The admittance transformation is the dual of that de-
scribed in the previous section. Table III gives these for-
mulas and information, the ratio of the imaginary to the
real part of the immittance before and after the transfor-

IMPEDANCE COORDINRTES

f = 0.4 - 2.5 (GHz), (58 Ohm normalized)

(@

IMPEDANCE CCORDINRTES

f = B.4 - 2.5 (GHz}), (58 Ohm normalized)
(b)

Fig. 7. The scheme of (a) narrow-band impedance transformation on
the impedance chart. The impedance loci of Z; are assigned by capital
letters (A—A‘, B—B’, and C-C’ correspond to the load shown in
Table II). The transformed impedance loci are assigned by small letters
and (b) one-point impedance matching using the lumped inductor.

mation, for the gain-bandwidth estimations. Fig. 9 shows
the line length / as a function of L, for the case of all
frequency transformations.

TV. EXPERIMENTAL RESULTS

Two lumped series RC loads and PTL’s were con-
structed. These loads consist of a metallized film resistor
and a chip capacitor in series. The measured frequency
responses of these loads (load I and load II) are shown in
Figs. 10 and 11, respectively, for the frequency range of
50-—-300 MHz, and represent good lumped impedances. In
Table IV, typical values of load constants (they are de-
termined from measured responses at f =150 MHz) and
parameters of the PTL’s designed for all frequency trans-
formations are listed. The line length needed for load II is
very short as compared with the wavelength of the measur-
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R
L
(a) (®)
Fig. 8. (a) The reciprocal parabolic tapered transmission line loaded by
the lumped parallel RL admittance and (b) its equivalent circuit.
TABLE III
IMMITTANCE TRANSFORMATION FORMULAS WITH PTL AND RPTL
series RC impedance transformation with PTL parallel RL admittance transformation with RPTL
all frequency narrow frequency all frequency narrow frequency
transformation transformation transformation transformation
= - /ER. L=V / (4f) O 2=V / (4 )
2 (RL RORL)\)CL 0 2= R, RORL)\)LL 0
W =R W.=/RR._/k W =R W0=k/§ORL
transmission line 0 Y 0 oL 0 Y
Ky =1/ (k=-1) K, = 1/ (k-1) K, =1/ (k - 1) K, =1/ (k- 1)
parameters
where where where where
= -1 = > 1
k= R /Ry>1 k=1+ (4f0cL/R0RL) >1) k= RO/ Ry <1 k=1+ (/RORL / 4fL)
load immittance before . 1 , 1 . 1 1 ; .4 1
2. {(jw) = + = Z_(jw,) = + = Yo (Jw) = —— 4+ - Yo (jw,) = —— + —
transformation L(J ) RL JwCL L% RL JMOCL L(:J ) RL ijL L (o} RL ijLL
(imaginary part) 1 1 ?LL it
(real part) mCLRL ©oCrRyL why, wOLL
- ; P . 1 . 1 1 . 1 1
driving point immittance| . (jw) = R, + 1 Z, {(jw.) = R - Y, (Jw) = o=+ — 1 Y. (Jw.) = —— + —
after transformation in'd 0 kaCL in770 0 ]MOkCL in Ry JukLy in 70 Ry ]kaLL
{imaginary part) 1 1 RO 0
(real part) wkcLRO kaCLRO kaL kaLL

100

(o]

*—* theoretical

measured

> 2{cm]

w

%. 1 1 10 100
—_— LL[nH]

Fig. 9. The line length / versus L, for Ry =50 Q.

(58 Ohm normal{zed)
Fig. 10. Experimental results for the load I shown in Table II.

ing frequency. These PTL’s are constructed in shielded
microstrip. theoretical responses. These measurements demonstrate the

The measured frequency responses of the driving point validity of the impedance transformation technique and
impedance Z;, are shown in Figs. 10 and 11, respectively. the operation of the PTL notwithstanding the line length.
In these figures, the theoretical responses were calculated
from the load constants and PTL parameters in Table IV
and the equivalent circuit shown in Fig. 2(b). Although We have demonstrated a simple technique for designing
there is a slight error apparent in the case of load II, both a parabolic tapered transmission line and reciprocal para-
measured responses seem to be in good agreement with the bolic tapered transmission-line impedance transformation

V. CONCLUSIONS
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IMPEDANCE COORDINATES

measured

theoretical

(50 Ohm normalfzed)

Fig. 11. Expenmental results for the load IT shown in Table IL.

TABLE IV
TYPICAL VALUES OF LOAD CONSTANTS AND PARAMETERS OF PTL’s
DESIGNED FOR ALL-FREQUENCY TRANSFORMATION

load parameters

" constants of PTLs
RL[QI CL[pF] WO[Q] Kl 2 [cm}
load 1 188.9 6.59 60 1.060 18.13
load II 90.2 3.29 50 2.913 2.27

networks for lumped RC and RL loads. Applying the
parabolic tapered transmission lines, we may decrease the
impedance levels of the series RC loads, and applying the
* reciprocal parabolic tapered transmission line, we may
decrease the admittance levels of the parallel RL -loads,
both for all frequency ranges. Matching techniques are
simpler with the use of parabolic and reciprocal parabolic
tapered transmission lines as proposed in this paper. The
quarter-wavelength parabolic (reciprocal parabolic) tapered
transmission line can transform any lumped series RC
(parallel RL) load into a convenient impedance for
ordinary impedance matching in narrow frequency ranges.
We have also shown experimental results for lumped RC
loads and have demonstrated the usefulness of the para-
bolic and reciprocal parabolic tapered transmission lines
and their equivalent circuits.
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Lossy Inductive-Post Obstacles in Lossy
Waveguide

PING GUAN LI axD ARLON TAYLOR ADAMS, SENIOR MEMBER, IEEE

Abstract —Post and wall losses are treated for inductive obstacles in
rectangular waveguide. Post losses are treated rigorously by moment
methods and wall losses are obtained by perturbational methods. Losses
may be taken into account by a modified equivalent circuit and a lossy
transmission line. Post losses may be comparable to wall losses.

I. INTRODUCTION

NDUCTIVE POSTS in rectangular waveguide have been

treated by many researchers [1]-[7], starting with the
classical treatment by Schwinger. A recent analysis [8] by
the authors utilized a Galerkin moment-method solution.
The post currents are represented in terms of a Fourier
series X _A,e/"® and as many terms of the series as
necessary are used, enabling one to treat arbitrary post
configurations. The extension to lossy posts and lossy walls
is considered in this paper. Post losses are treated rigor-
ously by moment methods in a direct extension of the
analysis of [8]. The post losses are taken into account by a
modification of the equivalent circuit of the obstacle; resis-
tive elements are added and reactive elements are changed
in value. The wall losses are obtained by perturbational
methods. Orthogonality is not maintained for wall losses.
The waveguide is separated in several regions (with differ-
ent numerical methods applicable to each) and the total
wall losses are calculated. The wall losses may then be
separated into two parts: a) the total minus dominant
mode (or excess) wall losses, and b) the dominant mode
wall losses. The latter may be treated by a lossy transmis-
sion-line model and the former may be treated by further
modification of the lumped equivalent circuit. Typical re-
sults are presented. It is noted that post losses are signifi-
cant and may in some cases be comparable to wall losses.

Manuscript received March 2. 1984; revised July 30, 1984.
The authors are with the Department of Electrical and Computer
Engineering, Syracuse University, Syracuse, NY 13210

For efficient analysis of post filters, the cascading of
equivalent circuits (i.e., the neglect of higher order mode
interactions) is desirable. It has been shown in [8] that such
an assumption is reasonable, even for high-Q filters. The
treatment described above permits such a cascaded model
for lossy filter analysis.

II. Post LOSSES

Fig. 1 shows a lossy cylindrical inductive post in a
rectangular waveguide. A dominant mode traveling in the z
direction is incident upon the post. A cylindrical coordi-
nate system is centered on the post axis at z= 0, y = ¢. The
incident electric field may be expressed as

ks T
E!=E,e /¥ sin ™
a

(1)

where

and k=%\z.

The incident electric field can also be expressed in the
Fourier-series form [8]

[ce]
Ei= Y (-1)"E, sin(% = na)J,,(kr)efne ()
where
a=tan"~ 1( Z )
k'a
The induced volume current density inside the post may
be represented as

L(r)= ¥ 3’(%1) 3)

n=—00
where k_ is the wavenumber of the conductor. For a good
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